Hyperbola Ques 16

Let $0<\theta<\frac{\pi}{2}$. If the eccentricity of the hyperbola $\frac{x^{2}}{\cos ^{2} \theta}-\frac{y^{2}}{\sin ^{2} \theta}=1$ is greater than 2 , then the length of its latus rectum lies in the interval

(2019 Main, 9 Jan I)

(a) $(1, \frac{3}{2})$

(b) $(3, \infty)$

(c) $(\frac{3}{2}, 2)$

(d) $(2,3)$

Show Answer

Answer:

Correct Answer: 16.(b)

Solution:

  1. For the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$,

$ e=\sqrt{1+\frac{b^{2}}{a^{2}}} $

$\therefore$ For the given hyperbola,

$ e=\sqrt{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}>2 $

$ \left(\because a^{2}=\cos ^{2} \theta \text { and } b^{2}=\sin ^{2} \theta\right) $

$\Rightarrow 1+\tan ^{2} \theta>4$

$\Rightarrow \tan ^{2} \theta>3$

$\Rightarrow \tan \theta \in(-\infty,-\sqrt{3}) \cup(\sqrt{3}, \infty)$

$ \left[x^{2}>3 \Rightarrow|x|>\sqrt{3} \Rightarrow x \in(-\infty,-\sqrt{3}) \cup(\sqrt{3}, \infty)\right] $

But $\theta \in (0, \frac{\pi}{2}) \Rightarrow \tan \theta \in(\sqrt{3}, \infty)$

$\Rightarrow \theta \in (\frac{\pi}{3}, \frac{\pi}{2})$

Now, length of latusrectum

$ =\frac{2 b^{2}}{a}=2 \frac{\sin ^{2} \theta}{\cos \theta}=2 \sin \theta \tan \theta $

Since, both $\sin \theta$ and $\tan \theta$ are increasing functions in $(\frac{\pi}{3}, \frac{\pi}{2} )$.

$\therefore$ Least value of latusrectum is

$ =2 \sin \frac{\pi}{3} \cdot \tan \frac{\pi}{3}=2 \cdot \frac{\sqrt{3}}{2} \cdot \sqrt{3}=3 \quad (\text { at } \theta=\frac{\pi}{3}) $

and greatest value of latusrectum is $<\infty$

Hence, latusrectum length $\in(3, \infty)$



Table of Contents