Hyperbola Ques 8

An ellipse intersects the hyperbola $2 x^{2}-2 y^{2}=1$ orthogonally. The eccentricity of the ellipse is reciprocal to that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then

(2009)

(a) equation of ellipse is $x^{2}+2 y^{2}=2$

(b) the foci of ellipse are $( \pm 1,0)$

(c) equation of ellipse is $x^{2}+2 y^{2}=4$

(d) the foci of ellipse are $( \pm \sqrt{2}, 0)$

Show Answer

Answer:

Correct Answer: 8.(a,b)

Solution:

  1. Given,

$ 2 x^{2}-2 y^{2}=1 $

$\Rightarrow \quad \frac{x^{2}}{(\frac{1}{2})}-\frac{y^{2}}{(\frac{1}{2})}=1$ $\quad$ …….(i)

Eccentricity of hyperbola $=\sqrt{2}$

So, eccentricity of ellipse $=1 / \sqrt{2}$

Let equation of ellipse be

$ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $

[where $a>b$ ]

$\therefore \frac{1}{\sqrt{2}} =\sqrt{1-\frac{b^{2}}{a^{2}}} $

$\Rightarrow \frac{b^{2}}{a^{2}} =\frac{1}{2} \Rightarrow a^{2}=2 b^{2} $

$\Rightarrow x^{2}+2 y^{2} =2 b^{2}$ $\quad$ …….(ii)

Let ellipse and hyperbola intersect at

$ A (\frac{1}{\sqrt{2}} \sec \theta, \frac{1}{\sqrt{2}} \tan \theta) $

On differentiating Eq. (i), we get

$4 x-4 y \frac{d y}{d x} =0 \Rightarrow \frac{d y}{d x}=\frac{x}{y} $

$\left.\frac{d y}{d x}\right| _{\text {at } A} =\frac{\sec \theta}{\tan \theta}=\operatorname{cosec} \theta$

and on differentiating Eq. (ii), we get

$ 2 x+4 y \frac{d y}{d x}=\left.0 \Rightarrow \frac{d y}{d x}\right| _{\text {at } A}=-\frac{x}{2 y}=-\frac{1}{2} \operatorname{cosec} \theta $

Since, ellipse and hyperbola are orthogonal.

$\therefore \quad-\frac{1}{2} \operatorname{cosec}^{2} \theta=-1 \Rightarrow \operatorname{cosec}^{2} \theta=2 \Rightarrow \theta= \pm \frac{\pi}{4}$

$\therefore \quad A (1, \frac{1}{\sqrt{2}})$ or $(1,-\frac{1}{\sqrt{2}})$

From Eq. (ii), $\quad 1+2 (\frac{1}{\sqrt{2}})^{2}=2 b^{2}$

$\Rightarrow \quad b^{2}=1$

Equation of ellipse is $x^{2}+2 y^{2}=2$.

Coordinates of foci $( \pm a e, 0)= (\pm \sqrt{2} \cdot \frac{1}{\sqrt{2}}, 0)=( \pm 1,0)$

If major axis is along $Y$-axis, then

$ \begin{aligned} \frac{1}{\sqrt{2}} & =\sqrt{1-\frac{a^{2}}{b^{2}}} \Rightarrow b^{2}=2 a^{2} \\ \therefore \quad 2 x^{2}+y^{2} & =2 a^{2} \Rightarrow Y^{\prime}=-\frac{2 x}{y} \\ \Rightarrow \quad y (_{\frac{1}{\sqrt{2}} \sec \theta, \frac{1}{\sqrt{2}} \tan \theta}) & =\frac{-2}{\sin \theta} \end{aligned} $

As ellipse and hyperbola are orthogonal

$ \begin{aligned} & \therefore \quad-\frac{2}{\sin \theta} \cdot \operatorname{cosec} \theta=-1 \\ & \Rightarrow \quad \operatorname{cosec}^{2} \theta=\frac{1}{2} \Rightarrow \theta= \pm \frac{\pi}{4} \\ & \therefore \quad 2 x^{2}+y^{2}=2 a^{2} \\ & \Rightarrow \quad 2+\frac{1}{2}=2 a^{2} \Rightarrow a^{2}=\frac{5}{4} \\ & \therefore \quad 2 x^{2}+y^{2}=\frac{5}{2} \text {, corresponding foci are }(0, \pm 1) \end{aligned} $

Hence, option (a) and (b) are correct.



Table of Contents