Inverse Circular Functions Ques 21

  1. Solve the following equation for $x$.

$ \tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4} $

(1978, 3M)

Show Answer

Answer:

Correct Answer: 21.$x=\frac{1}{6}$

Solution:

Formula:

Identities of Addition and Substraction:

  1. Given, $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$

$ \begin{aligned} & \Rightarrow \quad \tan ^{-1} (\frac{2 x+3 x}{1-6 x^{2}})=\frac{\pi}{4} \\ & \Rightarrow \quad \frac{5 x}{1-6 x^{2}}=1 \end{aligned} $

$ \Rightarrow \quad 6 x^{2}+5 x-1=0 $

$ \Rightarrow \quad(x+1)(6 x-1)=0 $

$\Rightarrow$

$ x=-1 \text { or } \frac{1}{6} $

But $x=-1$ does not satisfy the given equation.

$\therefore$ We take $x=\frac{1}{6}$

Download Chapter Test

http://tinyurl.com/y5bu7cjl or

23



Table of Contents