Inverse Circular Functions Ques 21
- Solve the following equation for $x$.
$ \tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4} $
(1978, 3M)
Show Answer
Answer:
Correct Answer: 21.$x=\frac{1}{6}$
Solution:
Formula:
Identities of Addition and Substraction:
- Given, $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$
$ \begin{aligned} & \Rightarrow \quad \tan ^{-1} (\frac{2 x+3 x}{1-6 x^{2}})=\frac{\pi}{4} \\ & \Rightarrow \quad \frac{5 x}{1-6 x^{2}}=1 \end{aligned} $
$ \Rightarrow \quad 6 x^{2}+5 x-1=0 $
$ \Rightarrow \quad(x+1)(6 x-1)=0 $
$\Rightarrow$
$ x=-1 \text { or } \frac{1}{6} $
But $x=-1$ does not satisfy the given equation.
$\therefore$ We take $x=\frac{1}{6}$
Download Chapter Test
http://tinyurl.com/y5bu7cjl or