Inverse Circular Functions Ques 26

  1. If $\tan ^{-1} y=\tan ^{-1} x+\tan ^{-1} \frac{2 x}{1-x^{2}}$, where $|x|<\frac{1}{\sqrt{3}}$. Then, the value of $y$ is

(a) $\frac{3 x-x^{3}}{1-3 x^{2}}$

(b) $\frac{3 x+x^{2}}{1-3 x^{2}}$

(c) $\frac{3 x-x^{3}}{1+3 x^{2}}$

(d) $\frac{3 x+x^{3}}{1+3 x^{2}}$

Show Answer

Answer:

Correct Answer: 26.(a)

Solution:

Formula:

Identities of Addition and Substraction:

  1. Given, $\tan ^{-1} y=\tan ^{-1} x+\tan ^{-1} (\frac{2 x}{1-x^{2}})$

$\text { where }|x|<\frac{1}{\sqrt{3}} \Rightarrow \tan ^{-1} y=\tan ^{-1} \{ \frac{x+\frac{2 x}{1-x^{2}}}{1-x \frac{2 x}{1-x^{2}}} \} $

$[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} (\frac{x+y}{1-x y}), $

$\text { where } x>0, y>0 \text { and } x y<1]$

$=\tan ^{-1} (\frac{x-x^{3}+2 x}{1-x^{2}-2 x^{2}}) $

$ \Rightarrow \quad \tan ^{-1} y=\tan ^{-1} (\frac{3 x-x^{3}}{1-3 x^{2}}) $

$ y=\frac{3 x-x^{3}}{1-3 x^{2}} $

$|x|<\frac{1}{\sqrt{3}} $

$ \Rightarrow \quad-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}$

Let $x=\tan \theta$

$ \begin{array}{lc} \Rightarrow & -\frac{\pi}{6}<\theta<\frac{\pi}{6} \\ \therefore & \tan ^{-1} y=\theta+\tan ^{-1}(\tan 2 \theta)=\theta+2 \theta=3 \theta \\ \Rightarrow & y=\tan 3 \theta \\ \Rightarrow & y=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta} \\ \Rightarrow & y=\frac{3 x-x^{3}}{1-3 x^{2}} \end{array} $



Table of Contents