Inverse Circular Functions Ques 29

  1. The value of $\tan \cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}$ is

(1983, 1M)

(a) $\frac{6}{17}$

(b) $\frac{17}{6}$

(c) $\frac{16}{7}$

(d) None of these

Show Answer

Answer:

Correct Answer: 29.(b)

Solution:

Formula:

Identities of Addition and Substraction:

  1. $\tan [\cos ^{-1} (\frac{4}{5})+\tan ^{-1} (\frac{2}{3})]=[\tan \tan ^{-1} (\frac{3}{4})+\tan ^{-1} (\frac{2}{3})]$

$ \because [\cos ^{-1} (\frac{4}{5})=\tan ^{-1} (\frac{3}{4})] $

$ =\tan [\tan ^{-1} (\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}})]=\tan [\tan ^{-1} (\frac{17}{6})]=\frac{17}{6} $



Table of Contents