Limit Continuity And Differentiability Ques 10

  1. If $x^2+y^2=1$, then

(2000, 1M)

(a) $y y^{\prime \prime}-2\left(y^{\prime}\right)^2+1=0$

(b) $y y^{\prime \prime}+\left(y^{\prime}\right)^2+1=0$

(c) $y y^{\prime \prime}+\left(y^{\prime}\right)^2-1=0$

(d) $y y^{\prime \prime}+2\left(y^{\prime}\right)^2+1=0$

Show Answer

Answer:

Correct Answer: 10.(b)

Solution: (b) Given, $x^2+y^2=1$

On differentiating w.r.t. $x$, we get

$ \begin{aligned} 2 x+2 y y^{\prime} & =0 \\ x+y y^{\prime} & =0 . \end{aligned} $

Again, differentiating w.r.t. $x$, we get

$ \begin{aligned} 1+y^{\prime} y^{\prime}+y y^{\prime \prime} & =0 \\ 1+\left(y^{\prime}\right)^2+y y^{\prime \prime} & =0 \end{aligned} $



Table of Contents