Limit Continuity And Differentiability Ques 18

  1. If $f(x)=\log _x(\log x)$, then $f^{\prime}(x)$ at $x=e$ is

$(1985,2 \mathrm{M})$

Show Answer

Answer:

Correct Answer: 18.$(\frac{1}{e})$

Solution: Given, $f(x)=\log _x(\log x)$

$\therefore \quad f(x)=\frac{\log (\log x)}{\log x}$

On differentiating both sides, we get

$ \begin{aligned} f^{\prime}(x) & =\frac{(\log x)\left(\frac{1}{\log x} \cdot \frac{1}{x}\right)-\log (\log x) \cdot \frac{1}{x}}{(\log x)^2} \\ \therefore \quad f^{\prime}(e) & =\frac{1 \cdot\left(\frac{1}{1} \cdot \frac{1}{e}\right)-\log (1) \cdot \frac{1}{e}}{(1)^2} \\ \Rightarrow \quad f^{\prime}(e) & =\frac{1}{e} \end{aligned} $



Table of Contents