Limit Continuity And Differentiability Ques 23

  1. If $e^y+x y=e$, the ordered pair $\left(\frac{d y}{d x}, \frac{d^2 y}{d x^2}\right)$ at $x=0$ is equal to

(2019 Main, 12 April I)

(a) $\left(\frac{1}{e},-\frac{1}{e^2}\right)$

(b) $\left(-\frac{1}{e}, \frac{1}{e^2}\right)$

(c) $\left(\frac{1}{e}, \frac{1}{e^2}\right)$

(d) $\left(-\frac{1}{e},-\frac{1}{e^2}\right)$

Show Answer

Answer:

Correct Answer: 23.(b)

Solution: (b) Key Idea

Differentiating the given equation twice w.r.t. ’ $x$ ‘.

Given equation is

$ e^y+x y=e \quad ……..(i) $

On differentiating both sides w.r.t. $x$, we get

$ \begin{aligned} e^y \frac{d y}{d x}+x \frac{d y}{d x}+y =0 \quad ……..(ii) \\ \frac{d y}{d x} =-\left(\frac{y}{e^y+x}\right) \quad ……..(iii) \end{aligned} $

Again differentiating Eq. (ii) w.r.t. ’ $x$ ‘, we get

$ e^y \frac{d^2 y}{d x^2}+e^y\left(\frac{d y}{d x}\right)^2+x \frac{d^2 y}{d x^2}+\frac{d y}{d x}+\frac{d y}{d x}=0 \quad ……..(iv) $

Now, on putting $x=0$ in Eq. (i), we get

$ \begin{gathered} e^y=e^1 \\ y=1 \end{gathered} $

On putting $x=0, y=1$ in Eq. (iii), we get

$ \frac{d y}{d x}=-\frac{1}{e+0}=-\frac{1}{e} $

Now, on putting $x=0, y=1$ and $\frac{d y}{d x}=-\frac{1}{e}$ in Eq. (iv), we get

$e^1 \frac{d^2 y}{d x^2}+e^1\left(-\frac{1}{e}\right)^2+0\left(\frac{d^2 y}{d x^2}\right)+\left(-\frac{1}{e}\right)+\left(-\frac{1}{e}\right)=0$

$\left.\Rightarrow \quad \frac{d^2 y}{d x^2}\right|_{(0,1)}=\frac{1}{e^2}$

So, $\quad\left(\frac{d y}{d x}, \frac{d^2 y}{d x^2}\right)$ at $(0,1)$ is $\left(-\frac{1}{e}, \frac{1}{e^2}\right)$



Table of Contents