Limit Continuity And Differentiability Ques 24

  1. If $x=\sec \theta-\cos \theta$ and $y=\sec ^n \theta-\cos ^n \theta$, then show that

$\left(x^2+4\right)\left(\frac{d y}{d x}\right)^2=n^2\left(y^2+4\right)$.

(1989, 2M)

Show Answer

Solution: Given, $x=\sec \theta-\cos \theta$ and $y=\sec ^n \theta-\cos ^n \theta$

On differentiating w.r.t. $\theta$ respectively, we get

$ \frac{d x}{d \theta}=\sec \theta \tan \theta+\sin \theta $

and $\frac{d y}{d \theta}=n \sec ^{n-1} \theta \cdot \sec \theta \tan \theta-n \cos ^{n-1} \theta \cdot(-\sin \theta)$

$\Rightarrow \quad \frac{d x}{d \theta}=\tan \theta(\sec \theta+\cos \theta)$

and $\frac{d y}{d \theta}=n \tan \theta\left(\sec ^n \theta+\cos ^n \theta\right)$

$\Rightarrow \quad \frac{d y}{d x}=\frac{n\left(\sec ^n \theta+\cos ^n \theta\right)}{\sec \theta+\cos \theta}$

$\therefore \quad \left(\frac{d y}{d x}\right)^2=\frac{n^2\left(\sec ^n \theta+\cos ^n \theta\right)^2}{(\sec \theta+\cos \theta)^2}$

$= \quad \frac{n^2\left\{\left(\sec ^n \theta-\cos ^n \theta\right)^2+4\right\}}{\left\{(\sec \theta-\cos \theta)^2+4\right\}}=\frac{n^2\left(y^2+4\right)}{\left(x^2+4\right)}$

$\Rightarrow \quad \left(x^2+4\right)\left(\frac{d y}{d x}\right)^2=n^2\left(y^2+4\right)$



Table of Contents