Limit Continuity And Differentiability Ques 36
Assertion and Reason
For the following questions, choose the correct answer from the codes (a), (b), (c) and (d) defined as follows.
(a) Statement I is true, Statement II is also true; Statement II is the correct explanation of Statement I
(b) Statement I is true, Statement II is also true; Statement II is not the correct explanation of Statement I
(c) Statement I is true; Statement II is false
(d) Statement I is false; Statement II is true
- Let $f$ and $g$ be real valued functions defined on interval $(-1,1)$ such that $g^{\prime \prime}(x)$ is continuous, $g(0) \neq 0, g^{\prime}(0)=0$, $g^{\prime \prime}(0) \neq 0$, and $f(x)=g(x) \sin x$.
Statement I $\lim _{x \rightarrow 0}[g(x) \cos x-g(0) \operatorname{cosec} x]=f^{\prime \prime}(0)$ and
Statement II $f^{\prime}(0)=g(0)$.
$(2008,3 \mathrm{M})$
Show Answer
Answer:
Correct Answer: 36.(b)
Solution: (b) Statement II
We have, $\lim _{x \rightarrow 0} \frac{g(x) \cos x-g(0)}{\sin x} \quad $ $ \left[\frac{0}{0} \text { form }\right] $
$ =\quad \lim _{x \rightarrow 0} \frac{g^{\prime}(x) \cos x-g(x) \sin x}{\cos x}=0 $
Since, $f(x)=g(x) \sin x$
$ f^{\prime}(x)=g^{\prime}(x) \sin x+g(x) \cos x $
and $f^{\prime \prime}(x)=g^{\prime \prime}(x) \sin x+2 g^{\prime}(x) \cos x-g(x) \sin x$ $ \quad \Rightarrow \quad f^{\prime \prime}(0)=0$
Thus, $\lim _{x \rightarrow 0}[g(x) \cos x-g(0) \operatorname{cosec} x]=0=f^{\prime \prime}(0)$
$\Rightarrow \quad$ Statement I is true.
Statement II $f^{\prime}(x)=g^{\prime}(x) \sin x+g(x) \cos x$ $\quad \Rightarrow \quad f^{\prime}(0)=g(0)$
Statement II is not a correct explanation of Statement I.