Limit Continuity And Differentiability Ques 37

  1. In the following, $[x]$ denotes the greatest integer less than or equal to $x$.
Column I Column II
A. $x|x|$ p. continuous in $(-1,1)$
B. $\sqrt{|x|}$ $\mathrm{q}$. differentiable in $(-1,1)$
C. $x+[x]$ $\mathrm{r}$. strictly increasing $(-1,1)$
D. $|x-1|+|x+1|$
in $(-1,1)$
s. not differentiable atleast at one
point in $(-1,1)$

$(2007,6 \mathrm{M})$

Show Answer

Answer:

Correct Answer: 37.$(\mathrm{A}) \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s} ;(\mathrm{B}) \rightarrow \mathrm{p}, \mathrm{s} ;(\mathrm{C}) \rightarrow \mathrm{r}, \mathrm{s} ; (\mathrm{D}) \rightarrow \mathrm{p}, \mathrm{s}$

Solution: A. $x|x|$ is continuous, differentiable and strictly increasing in $(-1,1)$.

B. $\sqrt{|x|}$ is continuous in $(-1,1)$ and not differentiable at $x=0$.

C. $x+[x]$ is strictly increasing in $(-1,1)$ and discontinuous at $x=0$ $\Rightarrow$ not differentiable at $x=0$.

D. $|x-1|+|x+1|=2$ in $(-1,1)$ $\Rightarrow$ The function is continuous and differentiable in $(-1,1)$.



Table of Contents