Limit Continuity And Differentiability Ques 4

  1. If $y=\sec \left(\tan ^{-1} x\right)$, then $\frac{d y}{d x}$ at $x=1$ is equal to

(2013)

(a) $\frac{1}{\sqrt{2}}$

(b) $\frac{1}{2}$

(c) $1$

(d) $\sqrt{2}$

Show Answer

Answer:

Correct Answer: 4.(a)

Solution: (a) Given, $y=\sec \left(\tan ^{-1} x\right)$

$\text { Let } \tan ^{-1} x =\theta $

$\Rightarrow \quad x =\tan \theta $

$ \therefore \quad y =\sec \theta=\sqrt{1+x^2}$

On differentiating w.r.t. $x$, we get

$ \frac{d y}{d x}=\frac{1}{2 \sqrt{1+x^2}} \cdot 2 x $

At $x=1, \quad \frac{d y}{d x}=\frac{1}{\sqrt{2}}$



Table of Contents