Limit Continuity And Differentiability Ques 56

  1. For $x>1$, if $(2 x)^{2 y}=4 e^{2 x-2 y}$, then $\left(1+\log _e 2 x\right)^2 \frac{d y}{d x}$ is equal to

(2019 Main, 12 Jan I)

(a) $\frac{x \log _e 2 x+\log _e 2}{x}$

(b) $\frac{x \log _e 2 x-\log _e 2}{x}$

(c) $x \log _e 2 x$

(d) $\log _e 2 x$

Show Answer

Answer:

Correct Answer: 56.(b)

Solution: (b) Given equation is

$ (2 x)^{2 y}=4 \cdot e^{2 x-2 y} $

On applying $ ’ \log _e’ $ both sides, we get

$\log _e(2 x)^{2 y}=\log _e 4+\log _e e^{2 x-2 y} $

$2 y \log _e(2 x)=\log _e(2)^2+(2 x-2 y) $

${\left[\because \log _e n^m=m \log _e n \text { and } \log _e e^{f(x)}=f(x)\right]} $

$\Rightarrow \quad \left(2 \log _e(2 x)+2\right) y=2 x+2 \log _e(2) $

$\Rightarrow \quad y=\frac{x+\log _e 2}{1+\log _e(2 x)}$

On differentiating ’ $y$ ’ w.r.t. ’ $x$ ‘, we get

$ \begin{aligned} \frac{d y}{d x} & =\frac{\left(1+\log _e(2 x)\right) 1-\left(x+\log _e 2\right) \frac{2}{2 x}}{\left(1+\log _e(2 x)\right)^2} \\ & =\frac{1+\log _e(2 x)-1-\frac{1}{x} \log _e 2}{\left(1+\log _e(2 x)\right)^2} \end{aligned} $

So, $\left(1+\log _e(2 x)\right)^2 \frac{d y}{d x}=\left(\frac{x \log _e(2 x)-\log _e 2}{x}\right)$



Table of Contents