Limit Continuity And Differentiability Ques 6

  1. $\frac{d^2 x}{d y^2}$ equals

(2007, 3M)

(a) $\left(\frac{d^2 y}{d x^2}\right)^{-1}$

(b) $-\left(\frac{d^2 y}{d x^2}\right)^{-1}\left(\frac{d y}{d x}\right)^{-3}$

(c) $\left(\frac{d^2 y}{d x^2}\right)\left(\frac{d y}{d x}\right)^{-2}$

(d) $-\left(\frac{d^2 y}{d x^2}\right)\left(\frac{d y}{d x}\right)^{-3}$

Show Answer

Answer:

Correct Answer: 6.(d)

Solution: (d) Since, $\quad \frac{d x}{d y}=\frac{1}{d y / d x}=\left(\frac{d y}{d x}\right)^{-1}$

$\Rightarrow \quad \frac{d}{d y}\left(\frac{d x}{d y}\right)=\frac{d}{d x}\left(\frac{d y}{d x}\right)^{-1} \frac{d x}{d y}$

$\Rightarrow \quad \frac{d^2 x}{d y^2}=-\left(\frac{d^2 y}{d x^2}\right)\left(\frac{d y}{d x}\right)^{-2}\left(\frac{d x}{d y}\right)=-\left(\frac{d^2 y}{d x^2}\right)\left(\frac{d y}{d x}\right)^{-3}$



Table of Contents