Limit Continuity And Differentiability Ques 63

  1. Let $f: R \rightarrow R$ be a function such that $f(x)=x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in R$.

Then, $f(2)$ equals

(2019 Main, 10 Jan I)

(a) $30$

(b) $-4$

(c) $-2$

(d) $8$

Show Answer

Answer:

Correct Answer: 63.(c)

Solution: (c) We have,

$ \begin{aligned} & f(x)=x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime} (3)\\ \Rightarrow \quad & f^{\prime}(x)=3 x^2+2 x f^{\prime}(1)+f^{\prime \prime}(2) \quad ……..(i) \\ \Rightarrow \quad & f^{\prime \prime}(x)=6 x+2 f^{\prime}(1) \quad ……..(ii) \\ \Rightarrow \quad & f^{\prime \prime}(x)=6 \quad ……..(iii) \\ \Rightarrow \quad & f^{\prime \prime \prime}(3)=3 \end{aligned} $

Putting $x=1$ in Eq. (i), we get

$ f^{\prime}(1)=3+2 f^{\prime}(1)+f^{\prime \prime}(2) \quad ……..(iv) $

and putting $x=2$ in Eq. (ii), we get

$ f^{\prime}(2)=12+2 f^{\prime}(1) \quad ……..(v) $

From Eqs. (iv) and (v), we get

$ \begin{array}{rlrl} & f^{\prime}(1) =3+2 f^{\prime}(1)+\left(12+2 f^{\prime}(1)\right) \\ \Rightarrow & 3 f^{\prime}(1) =-15 \\ \Rightarrow & f^{\prime}(1) =-5 \\ \Rightarrow & f^{\prime \prime}(2) =12+2(-5)=2 \\ \therefore& (x) =x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime}(3) \\ \Rightarrow & f(x) =x^3-5 x^2+2 x+6 \\ \Rightarrow & f(2) =2^3-5(2)^2+2(2)+6=8-20+4+6=-2 \end{array} $



Table of Contents