Limit Continuity And Differentiability Ques 7

  1. If $f^{\circ}(x)=-f(x)$, where $f(x)$ is a continuous double differentiable function and $g(x)=f^{\prime}(x)$.

If $F(x)=\left\{f\left(\frac{x}{2}\right)\right\}^2+\left\{g\left(\frac{x}{2}\right)\right\}^2$ and $F(5)=5$, then $F(10)$ is

(2006, 3M)

(a) $0$

(b) $5$

(c) $10$

(d) $25$

Show Answer

Answer:

Correct Answer: 7.(b)

Solution: (b) Since, $f^{\prime \prime}(x)=-f(x)$

$\Rightarrow \quad \frac{d}{d x}\left\{f^{\prime}(x)\right\}=-f(x)$

$\Rightarrow \quad g^{\prime}(x)=-f(x) \quad\left[\because g(x)=f^{\prime}(x)\right.$, given $]$ $\quad$ ……..(i)

Also, $\quad F(x)=\left\{f\left(\frac{x}{2}\right)\right\}^2+\left\{g\left(\frac{x}{2}\right)\right\}^2$

[from Eq.(i)]

$\Rightarrow \quad F^v(x)=2\left(f\left(\frac{x}{2}\right)\right) \cdot f^{\prime}\left(\frac{x}{2}\right) \cdot \frac{1}{2}$ $+2\left(g\left(\frac{x}{2}\right)\right) \cdot g\left(\frac{x}{2}\right) \cdot \frac{1}{2}=0$

$\therefore \quad F(x)$ is constant

$\Rightarrow \quad F(10)=F(5)=5$



Table of Contents