Limit Continuity And Differentiability Ques 8

  1. Let $f$ be twice differentiable function satisfying $f(1)=1, f(2)=4, f(3)=9$, then

(2005, 2M)

(a) $f^{\prime \prime}(x)=2, \forall x \in(R)$

(b) $f^{\prime}(x)=5=f^{\prime \prime}(x)$, for some $x \in(1,3)$

(c) there exists atleast one $x \in(1,3)$ such that $f^{\prime \prime}(x)=2$

(d) None of the above

Show Answer

Answer:

Correct Answer: 8.(c)

Solution: (c) Let, $g(x)=f(x)-x^2$

$\Rightarrow \quad g(x)$ has atleast $3$ real roots which are $x=1,2,3$

[by mean value theorem]

$\Rightarrow \quad g^{\prime}(x)$ has atleast $2$ real roots in $x \in(1,3)$

$\Rightarrow \quad g^{\prime \prime}(x)$ has atleast $1$ real roots in $x \in(1,3)$

$\Rightarrow \quad f^{\prime \prime}(x)-2 \cdot 1=0$. for atleast $1$ real root in $x \in(1,3)$

$\Rightarrow \quad f^{\prime \prime}(x)=2$, for atleast one root in $x \in(1,3)$



Table of Contents