Limit Continuity And Differentiability Ques 9

  1. If $y$ is a function of $x$ and $\log (x+y)=2 x y$, then the value of $y^{\prime}(0)$ is

(2004, 1M)

(a) $1$

(b) $-1$

(c) $2$

(d) $0$

Show Answer

Answer:

Correct Answer: 9.(a)

Solution: (a) Given that, $\log (x+y)=2 x y$ $\quad$ ……..(i)

$\therefore \quad $ At $x=0, \Rightarrow \log (y)=0 \Rightarrow y=1$

$\therefore \quad $ To find $\frac{d y}{d x}$ at $(0,1)$

On differentiating Eq. (i) w.r.t. $x$, we get

$ \frac{1}{x+y}\left(1+\frac{d y}{d y}\right) =2 x \frac{d y}{d x}+2 y \cdot 1 $

$\Rightarrow \quad \frac{d y}{d x} =\frac{2 y(x+y)-1}{1-2(x+y) x} $

$\Rightarrow \quad \left(\frac{d y}{d x}\right)_{(0,1)} =1 $



Table of Contents