Matrices And Determinants Ques 18

Let $\omega$ be a solution of $x^{3}-1=0$ with $\operatorname{Im}(\omega)>0$. If $a=2$ with $b$ and $c$ satisfying Eq. (i) then the value of $\frac{3}{\omega^{a}}+\frac{1}{\omega^{b}}+\frac{3}{\omega^{c}}$ is

(a) $-2$

(b) $ 2$

(c) $ 3$

(d) $-3$

Show Answer

Answer:

Correct Answer: 18.(a)

Solution:

Formula:

Properties of matrix multiplication:

  1. If $a=2, b=12, c=-14$

$\therefore \frac{3}{\omega^{a}}+\frac{1}{\omega^{b}}+\frac{3}{\omega^{c}}$

$\Rightarrow \frac{3}{\omega^{2}}+\frac{1}{\omega^{12}}+\frac{3}{\omega^{-14}}=\frac{3}{\omega^{2}}+1+3 \omega^{2}=3 \omega+1+3 \omega^{2}$

$ =1+3\left(\omega+\omega^{2}\right)=1-3=-2 $



Table of Contents