Matrices And Determinants Ques 22

The total number of matrices $A=\left[\begin{array}{ccc}0 & 2 y & 1 \\ 2 x & y & -1 \\ 2 x & -y & 1\end{array}\right]$, $(x, y \in R, x \neq y)$ for which $A^T A=3 I_3$ is

(2019 Main, 9 April II)

(a) $2$

(b) $4$

(c) $3$

(d) $6$

Show Answer

Answer:

Correct Answer: 22.(b)

Solution:

Formula:

Properties of matrix multiplication:

Given matrix

$ A=\left[\begin{array}{ccc} 0 & 2 y & 1 \\ 2 x & y & -1 \\ 2 x & -y & 1 \end{array}\right],(x, y \in R, x \neq y) $

for which

$ \begin{aligned} & A^T A=3 I_3 \\ \Rightarrow & {\left[\begin{array}{ccc} 0 & 2 x & 2 x \\ 2 y & y & -y \\ 1 & -1 & 1 \end{array}\right]\left[\begin{array}{ccc} 0 & 2 y & 1 \\ 2 x & y & -1 \\ 2 x & -y & 1 \end{array}\right]=\left[\begin{array}{lll} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{array}\right] } \\ \Rightarrow & {\left[\begin{array}{ccc} 8 x^2 & 0 & 0 \\ 0 & 6 y^2 & 0 \\ 0 & 0 & 3 \end{array}\right]=\left[\begin{array}{lll} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{array}\right] } \end{aligned} $

Here, two matrices are equal, therefore equating the corresponding elements, we get

$ 8 x^2 =3 \text { and } 6 y^2=3 $

$\Rightarrow x = \pm \sqrt{\frac{3}{8}} $

$\text { and } y = \pm \frac{1}{\sqrt{2}}$

$\because$ There are $2$ different values of $x$ and $y$ each.

So, $ 4 $ matrices are possible such that $A^T A=3 I_3$.



Table of Contents