Matrices And Determinants Ques 25
Let $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right],(\alpha \in R)$ such that $A^{32}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Then, a value of $\alpha$ is
(a) $\frac{\pi}{32}$
(b) $0$
(c) $\frac{\pi}{64}$
(d) $\frac{\pi}{16}$
(2019 Main, 8 April I)
Show Answer
Answer:
Correct Answer: 25.(c)
Solution:
Formula:
Properties of matrix multiplication:
- Given, matrix $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$\therefore A^2=\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right] $ $\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha& \cos \alpha \end{array}\right] $
$=\left[\begin{array}{cc} \cos 2 \alpha & - \sin 2 \alpha \\ \sin 2 \alpha &\cos 2 \alpha \end{array}\right]$
$=\left[\begin{array}{cc} \cos 2 \alpha - \sin 2 \alpha & - \cos \alpha \sin \alpha - \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha + \cos \alpha \sin \alpha & - \sin 2 \alpha + \cos 2 \alpha \end{array}\right]$
Similarly,
$ \begin{aligned} A^n & =\left[\begin{array}{cc} \cos (n \alpha) & -\sin (n \alpha) \\ \sin (n \alpha) & \cos (n \alpha) \end{array}\right], n \in N \\ \Rightarrow A^{32} & =\left[\begin{array}{cc} \cos (32 \alpha) & -\sin (32 \alpha) \\ \sin (32 \alpha) & \cos (32 \alpha) \end{array}\right]=\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \text { (given) } \end{aligned} $
So, $\cos (32 \alpha)=0$ and $\sin (32 \alpha)=1$
$ \Rightarrow \quad 32 \alpha=\frac{\pi}{2} \Rightarrow \alpha=\frac{\pi}{64} $