Matrices And Determinants Ques 38

The number of distinct real roots of

$\begin{vmatrix}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{vmatrix}=0$ in the interval $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ is

(a) $0$

(b) $2$

(c) $1$

(d) $3$

(2001, 1M)

Show Answer

Answer:

Correct Answer: 38.(c)

Solution:

Formula:

PROPERTIES OF DETERMINANTS:

  1. Given, $\begin{vmatrix}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{vmatrix}=0$

Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$

$ \begin{vmatrix} & \sin x+2 \cos x & \cos x & \cos x \\ & \sin x+2 \cos x & \sin x & \cos x \\ & \sin x+2 \cos x & \cos x & \sin x \\ \end{vmatrix} $

$ =(2 \cos x+\sin x) $ $ \begin{vmatrix} 1 & \cos x & \cos x \\ 1 & \sin x & \cos x \\ 1 & \cos x & \sin x \end{vmatrix}=0 $

Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$

$(2 \cos x+\sin x)$ $ \begin{vmatrix} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 0 & 0 & \sin x-\cos x \end{vmatrix}$ =0

$\Rightarrow (2 \cos x+\sin x)(\sin x-\cos x)^{2}=0 $

$\Rightarrow 2 \cos x+\sin x=0 \text { or } \sin x-\cos x=0 $

$\Rightarrow 2 \cos x=-\sin x \text { or } \sin x=\cos x$

$\Rightarrow \cot x=-1 / 2$ gives no solution in $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$

and $\sin x=\cos x \Rightarrow \tan x=1 \quad \Rightarrow \quad x=\pi / 4$



Table of Contents