Matrices And Determinants Ques 39

If $f(x)=\begin{vmatrix}1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{vmatrix}$,

then $f(100)$ is equal to

(1999, 2M)

(a) $0$

(b) $1$

(c) $100$

(d) $-100$

Show Answer

Answer:

Correct Answer: 39.(a)

Solution:

Formula:

PROPERTIES OF DETERMINANTS:

  1. Given,

$ f(x)=\begin{vmatrix} 1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1) \end{vmatrix} $

Applying $C_{3} \rightarrow C_{3}-\left(C_{1}+C_{2}\right)$

$ \begin{vmatrix} 1 & x & 0 \\ 2 x & x(x-1) & 0 \\ 3 x(x-1) & x(x-1)(x-2) & 0 \end{vmatrix} $

$ \therefore \quad f(x)=0 \Rightarrow f(100)=0 $



Table of Contents