Matrices And Determinants Ques 43

The sum of the real roots of the equation $\left|\begin{matrix}x & -6 & -1 \\ 2 & -3 x & x-3 \\ -3 & 2 x & x+2\end{matrix}\right|=0$, is equal to

(a) $0$

(b) $-4$

(c) $6$

(d) $1$

(2019 Main, 10 April II)

Show Answer

Answer:

Correct Answer: 43.(a)

Solution:

Formula:

Evaluation of the Determinant:

  1. Given equation

$ \left|\begin{matrix} x & -6 & -1 \\ 2 & -3 x & x-3 \\ -3 & 2 x & x+2 \end{matrix}\right|=0 $

On expansion of determinant along $R_{1}$, we get

$x[(-3 x)(x+2)-2 x(x-3)]+6[2(x+2)+3(x-3)]$

$ -1[2(2 x)-(-3 x)(-3)]=0 $

$\Rightarrow x\left[-3 x^{2}-6 x-2 x^{2}+6 x\right]+6[2 x+4+3 x-9]$

$ -1[4 x-9 x]=0 $

$\Rightarrow x\left(-5 x^{2}\right)+6(5 x-5)-1(-5 x)=0$

$\Rightarrow \quad-5 x^{3}+30 x-30+5 x=0$

$\Rightarrow \quad 5 x^{3}-35 x+30=0 \quad \Rightarrow \quad x^{3}-7 x+6=0$.

Since all roots are real

$\therefore$ Sum of roots $=-\frac{\text { coefficient of } x^{2}}{\text { coefficient of } x^{3}}=0$



Table of Contents