Matrices And Determinants Ques 48

Let $P$ be a matrix of order $3 \times 3$ such that all the entries in $P$ are from the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of $P$ is

Show Answer

Answer:

Correct Answer: 48.(4)

Solution:

Formula:

Evaluation of the Determinant:

  1. Let $\operatorname{Det}(P)=\begin{vmatrix}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{vmatrix}$

$ =a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) $

Now, maximum value of $\operatorname{Det}(P)=6$

If $a_{1}=1, a_{2}=-1, a_{3}=1, b_{2} c_{3}=b_{1} c_{3}=b_{1} c_{2}=1$

$ \text { and } b_{3} c_{2}=b_{3} c_{1}=b_{2} c_{1}=-1 $

But it is not possible as

$ \left(b_{2} c_{3}\right)\left(b_{3} c_{1}\right)\left(b_{1} c_{2}\right)=-1 \text { and }\left(b_{1} c_{3}\right)\left(b_{3} c_{2}\right)\left(b_{2} c_{1}\right)=1 $

$ \text { i.e., } b_{1} b_{2} b_{3} c_{1} c_{2} c_{3}=1 \text { and }-1 $

Similar contradiction occurs when $a_{1}=1, a_{2}=1, a_{3}=1, b_{2} c_{1}=b_{3} c_{1}=b_{1} c_{2}=1$

$ \text { and } b_{3} c_{2}=b_{1} c_{3}=b_{1} c_{2}=-1 $

Now, for value to be $5$ one of the terms must be zero but that will make $2$ terms zero which means answer cannot be $5$

Now, $\begin{vmatrix}1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1\end{vmatrix}=4$

Hence, maximum value is $4$ .



Table of Contents