Matrices And Determinants Ques 55
If $M$ is a $3 \times 3$ matrix, where $M^{T} M=I$ and $\operatorname{det}(M)=1$, then prove that $\operatorname{det}(M-I)=0$
(2004, 2M)
Show Answer
Solution:
- Since, $M^{T} M=I$ and $|M|=1$
$ \therefore \quad|M-I|=|I M-M^{T} M |$
$ \Rightarrow|M-I|=|\left(I-M^{T}\right) M|=|(I-M)^{T}|$ $|M|=|I-M| $
$ =(-1)^{3}|M-I|$
$[\because I-M \text { is a } 3 \times 3 \text { matrix }] $
$ =-|M-I| $
$ \Rightarrow \quad 2|M-I|=0 $
$ \Rightarrow \quad|M-I|=0$