Matrices And Determinants Ques 74

If $A=$ $\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 1\\ 0 & -2 & 4 \end{bmatrix}$, $6 A^{-1}=A^{2}+c A+d I$, then $(c, d)$ is

(2005, 1M)

(a) $(-6,11)$

(b) $(-11,6)$

(c) $(11,6)$

(d) $(6,11)$

Show Answer

Answer:

Correct Answer: 74.(a)

Solution:

  1. Every square matrix satisfied its characteristic equation,

$ \begin{aligned} & \text { i.e. }|A-\lambda I|=0 \Rightarrow\left|\begin{array}{ccc}74-\lambda & 0 & 0 \\ 0 & 1-\lambda & 1 \\ 0 & -2 & 4-\lambda \end{array}\right|=0 \\ & \Rightarrow \quad(1-\lambda)\{(1-\lambda)(4-\lambda)+2\}=0 \\ & \Rightarrow \quad \lambda^{3}-6 \lambda^{2}+11 \lambda-6=0 \\ & \Rightarrow \quad A^{3}-6 A^{2}+11 A-6 I=O \quad ……(i) \end{aligned} $

Given, $6 A^{-1}=A^{2}+c A+d I$, multiplying both sides by $A$, we get

$6 I=A^{3}+c A^{2}+d A \Rightarrow A^{3}+c A^{2}+d A-6 I=O \quad ……(ii)$

On comparing Eqs. (i) and (ii), we get

$ c=-6 \text { and } d=11 $



Table of Contents