Matrices And Determinants Ques 84

If $P$ is a $3 \times 3$ matrix such that $P^{T}=2 P+I$, where $P^{T}$ is the transpose of $P$ and $I$ is the $3 \times 3$ identity matrix, then $x \quad 0$ there exists a column matrix, $X=$ $\begin{bmatrix} x \\ y\\ z \end{bmatrix}$ $\neq$ $\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$ such that

(a) $PX=$ $\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$

(b) $P X=X$

(c) $P X=2 X$

(d) $P X=-X$

Show Answer

Answer:

Correct Answer: 84.(d)

Solution:

Formula:

Evaluation of the Determinant:

  1. Given, $P^{T}=2 P+I$

$ \begin{array}{ll} \therefore & \left(P^{T}\right)^{T}=(2 P+I)^{T}=2 P^{T}+I \\ \Rightarrow & P=2 P^{T}+I \\ \Rightarrow & P=2(2 P+I)+I \\ \Rightarrow & P=4 P+3 I \text { or } 3 P=-3 I \\ \Rightarrow & P X=-I X=-X \end{array} $



Table of Contents