Parabola Ques 11
- From a point $A$ common tangents are drawn to the circle $x^2+y^2=\frac{a^2}{2}$ and parabola $y^2=4 a x$. Find the area of the quadrilateral formed by the common tangents, the chord of contact of the circle and the chord of contact of the parabola.
(1996, 2M)
Show Answer
Answer:
Correct Answer: 11.$\left(\frac{15 a^2}{4}\right)$
Solution: Equation of any tangent to the parabola, $y^2=4 a x$ is $y=m x+\frac{a}{m}$
This line will touch the circle $x^2+y^2=\frac{a^2}{2}$

If $\left(\frac{a}{m}\right)^2=\frac{a^2}{2}\left(m^2+1\right)$
$\Rightarrow \quad \frac{1}{m^2}=\frac{1}{2}\left(m^2+1\right)$
$\Rightarrow \quad 2=m^4+m^2$
$\Rightarrow \quad m^4+m^2-2=0$
$\Rightarrow \quad\left(m^2-1\right)\left(m^2+2\right)=0$
$\Rightarrow \quad m^2-1=0, m^2=-2$
$\Rightarrow \quad m= \pm 1 \quad\left [m^2=-2\right.$ is not possible]
Therefore, two common tangents are
$ y=x+a \text { and } y=-x-a $
These two intersect at $A(-a, 0)$.
The chord of contact of $A(-a, 0)$ for the circle
$x^2+y^2=a^2 / 2$ is $(-a) x+0 \cdot y=a^2 / 2$
$\Rightarrow \quad x=-a / 2$
and chord of contact of $A(-a, 0)$ for the parabola $y^2=4 a x$ is $0 \cdot y=2 a(x-a) \quad \Rightarrow \quad x=a$
Again, length of $B C=2 B K$
$ \begin{aligned} & =2 \sqrt{O B^2-O K^2} \\ & =2 \sqrt{\frac{\alpha^2}{2}-\frac{a^2}{4}}=2 \sqrt{\frac{a^2}{4}}=a \end{aligned} $
and we know that, $D E$ is the latusrectum of the parabola, so its length is $4 a$.
Thus, area of the quadrilateral $B C D E$
$ \begin{aligned} = & \frac{1}{2}(B C+D E)(K L) \\ = & \frac{1}{2}(a+4 a)\left(\frac{3 a}{2}\right)=\frac{15 a^2}{4} \end{aligned} $