Probability Ques 129

The minimum number of times a fair coin needs to be tossed, so that the probability of getting atleast two heads is atleast $0.96$ , is

(2015 Adv.)

Show Answer

Answer:

Correct Answer: 129.(8)

Solution:

Formula:

Binomial distribution:

  1. Using Binomial distribution,

$ \begin{aligned} P(X \geq 2) & =1-P(X=0)-P(X=1) \\ & =1-(\frac{1}{2}){ }^{n}-[{ }^{n} C _1 \cdot \frac{1}{2} \cdot \frac{1}{2}{ }^{n-1}] \\ & =1-\frac{1}{2^{n}}-{ }^{n} C _1 \cdot \frac{1}{2^{n}}=1-(\frac{1+n}{2^{n}}) \end{aligned} $

Given, $P(X \geq 2) \geq 0.96$

$ \begin{aligned} & \therefore \quad 1-\frac{(n+1)}{2^{n}} \geq \frac{24}{25} \\ & \Rightarrow \quad \frac{n+1}{2^{n}} \leq \frac{1}{25} \\ & \therefore \quad n=8 \end{aligned} $



Table of Contents