Probability Ques 130

Let a random variable $X$ have a binomial distribution with mean $8$ and variance $4$ . If $P(X \leq 2)=\frac{k}{2^{16}}$, then $k$ is equal to

(2019 Main, 12 April I)

(a) $17$

(b) $121$

(c) $1$

(d) $137$

Show Answer

Answer:

Correct Answer: 130.(d)

Solution:

Formula:

Probability distribution:

  1. Let for the given random variable ’ $X$ ’ the binomial probability distribution have $n$-number of independent trials and probability of success and failure are $p$ and $q$ respectively. According to the question, Mean $=n p=8$ and variance $=n p q=4$

$ \begin{aligned} & \therefore \quad q=\frac{1}{2} \Rightarrow p=1-q=\frac{1}{2} \\ & \text { Now, } \quad n \times \frac{1}{2}=8 \Rightarrow n=16 \\ & P(X=r)=^{16} C _r (\frac{1}{2})^{16} \\ & \therefore \quad P(X \leq 2)=P(X=0)+P(X=1)+P(X=2) \\ & { }^{16} C _0 (\frac{1}{2})^{16}+{ }^{16} C _1 (\frac{1}{2})^{16}+{ }^{16} C _2 (\frac{1}{2})^{16} \\ & =\frac{1+16+120}{2^{16}}=\frac{137}{2^{16}}=\frac{k}{2^{16}} \\ & \Rightarrow \quad k=137 \end{aligned} $



Table of Contents