Probability Ques 24

Let $S=(1,2, \ldots, 20)$. $A$ subset $B$ of $S$ is said to be “nice”, if the sum of the elements of $B$ is $203$. Then, the probability that a randomly chosen subset of $S$ is “nice”, is

(a) $\frac{6}{2^{20}}$

(b) $\frac{4}{2^{20}}$

(c) $\frac{7}{2^{20}}$

(d) $\frac{5}{2^{20}}$

(2019 Main, 11 Jan II)

Show Answer

Answer:

Correct Answer: 24.(d)

Solution:

Formula:

Definition of Probability :

  1. Number of subset of $S=2^{20}$

Sum of elements in $S$ is $1+2+\ldots .+20=\frac{20(21)}{2}=210$

$ [\because 1+2+\ldots \ldots+n=\frac{n(n+1)}{2}] $

Clearly, the sum of elements of a subset would be $203$, if we consider it as follows

$S-(7), S-(1,6) S-(2,5), S-(3,4)$, $S-(1,2,4)$

$\therefore$ Number of favourables cases $=5$

Hence, required probability $=\frac{5}{2^{20}}$



Table of Contents