Probability Ques 25

If two different numbers are taken from the set $(0,1$, $2,3, \ldots, 10)$, then the probability that their sum as well as absolute difference are both multiple of $4$ , is

(a) $\frac{6}{55}$

(b) $\frac{12}{55}$

(c) $\frac{14}{45}$

(d) $\frac{7}{55}$

(2017 Main)

Show Answer

Answer:

Correct Answer: 25.(a)

Solution:

Formula:

Definition of Probability :

  1. Total number of ways of selecting 2 different numbers from $\{0,1,2, \ldots, 10\}={ }^{11} C _2=55$

Let two numbers selected be $x$ and $y$.

$ \begin{array}{lc} \text { Then, } & x+y=4 m \\ \text { and } & x-y=4 n \\ \Rightarrow & 2 x=4(m+n) \text { and } 2 y=4(m-n) \\ \Rightarrow & x=2(m+n) \text { and } y=2(m-n) \end{array} $

$\therefore x$ and $y$ both are even numbers.

$x$ $y$
0 4,8
2 6,10
4 0,8
6 2,10
8 0,4
10 2,6

$\therefore$ Required probability $=\frac{6}{55}$



Table of Contents