Probability Ques 30

For three events $A, B$ and $C$, if $P$ (exactly one of $A$ or $B$ occurs $)=P$ (exactly one of $B$ or $C$ occurs $)=P$ (exactly one of $C$ or $A$ occurs $)=\frac{1}{4}$ and $P$ (all the three events occur simultaneously) $=\frac{1}{16}$, then the probability that atleast one of the events occurs, is

(a) $\frac{7}{32}$

(b) $\frac{7}{16}$

(c) $\frac{7}{64}$

(d) $\frac{3}{16}$

(2017 Main)

Show Answer

Answer:

Correct Answer: 30.(b)

Solution:

  1. We have, $P$ (exactly one of $A$ or $B$ occurs)

$ \begin{aligned} & =P(A \cup B)-P(A \cap B) \\ & =P(A)+P(B)-2 P(A \cap B) \end{aligned} $

According to the question,

$ \begin{aligned} & P(A)+P(B)-2 P(A \cap B)=\frac{1}{4} \quad …….(i) \\ & P(B)+P(C)-2 P(B \cap C)=\frac{1}{4} \quad …….(ii)\\ & P(C)+P(A)-2 P(C \cap A)=\frac{1}{4} \quad …….(iii) \end{aligned} $

On adding Eqs. (i), (ii) and (iii), we get

$ 2[P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C) $ $ -P(C \cap A)]=\frac{3}{4} $

$ \Rightarrow P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C) $ $ -P(C \cap A)=\frac{3}{8} $

$\therefore \quad P$ (atleast one event occurs)

$= P (A \cap B \cap C)$

$ =P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C) $ $ -P(C \cap A)+P(A \cap B \cap C) $

$ =\frac{3}{8}+\frac{1}{16}=\frac{7}{16} \quad [\because P(A \cap B \cap C)=\frac{1}{16}]$



Table of Contents