Probability Ques 32

$P(A \cup B)=P(A \cap B)$ if and only if the relation between $P(A)$ and $P(B)$ is… .

$(1985,2 M)$

Show Answer

Answer:

Correct Answer: 32.$P(A \cap B)$

Solution:

  1. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

If $\quad P(A \cup B)=P(A \cap B)$,

then $P(A)$ and $P(B)$ are equals.

Since, $P(A \cup B)=P(A \cap B) \Rightarrow A$ and $B$ are equals sets

Thus, $P(A)$ and $P(B)$ is equal to $P(A \cap B)$.



Table of Contents