Probability Ques 39

If $P(B)=\frac{3}{4}, P(A \cap B \cap \bar{C})=\frac{1}{3}$ and $P(\bar{A} \cap B \cap \bar{C})=\frac{1}{3}$, then $P(B \cap C)$ is equal to

(a) $\frac{1}{12}$

(b) $\frac{1}{6}$

(c) $\frac{1}{15}$

(d) $\frac{1}{9}$

(2002, 3M)

Show Answer

Answer:

Correct Answer: 39.(a)

Solution:

  1. Given, $P(B)=\frac{3}{4}, P(A \cap B \cap \bar{C})=\frac{1}{3}$

and

$ P(\bar{A} \cap B \cap \bar{C})=\frac{1}{3} $

which can be shown in Venn diagram.

$\therefore P(B \cap C)=P(B)-\{P(A \cap B \cap \bar{C}+P(\bar{A} \cap B \cap \bar{C}))\}$

$ =\frac{3}{4}-\frac{1}{3}+\frac{1}{3}=\frac{3}{4}-\frac{2}{3}=\frac{1}{12} $



Table of Contents