Probability Ques 41

For the three events $A, B$ and $C, P($ exactly one of the events $A$ or $B$ occurs $)=P$ (exactly one of the events $B$ or $C$ occurs $)=P($ exactly one of the events $C$ or $A$ occurs $)$ $=p$ and $P$ (all the three events occurs simultaneously) $=p^{2}$, where $0<p<\frac{1}{2}$. Then, the probability of atleast one of the three events $A, B$ and $C$ occurring is

(1996, 2M)

(a) $\frac{3 p+2 p^{2}}{2}$

(b) $\frac{p+3 p^{2}}{4}$

(c) $\frac{p+3 p^{2}}{2}$

(d) $\frac{3 p+2 p^{2}}{4}$

Show Answer

Answer:

Correct Answer: 41.(a)

Solution:

  1. We know that,

$P$ (exactly one of $A$ or $B$ occurs)

$ \begin{array}{ll} & =P(A)+P(B)-2 P(A \cap B) \\ \therefore & P(A)+P(B)-2 P(A \cap B)=p \quad …….(i) \\ \text { Similarly, } & P(B)+P(C)-2 P(B \cap C)=p \quad …….(ii)\\ \text { and } & P(C)+P(A)-2 P(C \cap A)=p\quad …….(iii) \end{array} $

On adding Eqs. (i), (ii) and (iii), we get

$2[P(A)+P(B)+P(C)-P(A \cap B) $ $-P(B \cap C)-P(C \cap A)]=3 p $

$\Rightarrow P(A)+P(B)+P(C)-P(A \cap B) -P(B \cap C)-P(C \cap A)=\frac{3 p}{2} \quad …….(iv)$

It also given that, $P(A \cap B \cap C)=p^{2}\quad …….(v)$

$\therefore \quad P$ (at least one of the events $A, B$, and $C$ occurs)

$ =P(A)+P(B)+P(C)-P(A \cap B) $ $ -P(B \cap C)-P(C \cap A)+P(A \cap B \cap C) $

$ =\frac{3 p}{2}+p^{2} \quad \text { [from Eqs. (iv) and (v)] } $

$ =\frac{3 p+2 p^{2}}{2}$



Table of Contents