Probability Ques 46

If $M$ and $N$ are any two events, then the probability that exactly one of them occurs is

(a) $P(M)+P(N)-2 P(M \cap N)$

(b) $P(M)+P(N)-P(\overline{M \cup N})$

(c) $P(\bar{M})+P(\bar{N})-2 P(\bar{M} \cap \bar{N})$

(d) $P(M \cap \bar{N})-P(\bar{M} \cap N)$

(1984, 3M)

Show Answer

Answer:

Correct Answer: 46.(a, c)

Solution:

Formula:

Set theoretical notation of probability and some important results:

  1. $P$ (exactly one of $M, N$ occurs)

$=P\{(M \cap \bar{N}) \cup(\bar{M} \cap N)\}=P(M \cap \bar{N})+P(\bar{M} \cap N)$

$=P(M)-P(M \cap N)+P(N)-P(M \cap N)$

$=P(M)+P(N)-2 P(M \cap N)$

Also, $P$ (exactly one of them occurs)

$=\{1-P(\bar{M} \cap \bar{N})\}\{1-P(\bar{M} \cup \bar{N})\}$

$=P(\bar{M} \cup \bar{N})-P(\bar{M} \cap \bar{N})=P(\bar{M})+P(\bar{N})-2 P(\bar{M} \cap \bar{N})$

Hence, (a) and (c) are correct answers.



Table of Contents