Probability Ques 68

If two events $A$ and $B$ are such that $P\left(A^{c}\right)=0.3, P(B)=0.4$ and $P\left(A \cap B^{c}\right)=0.5$, then $P\left[B /\left(A \cup B^{c}\right)\right]=\ldots$.

$(1994,2 M)$

Show Answer

Answer:

Correct Answer: 68.$(\frac{1}{4})$

Solution:

Formula:

Set theoretical notation of probability and some important results:

  1. $P\left(A^{c}\right)=0.3$

[given]

$\Rightarrow \quad P(A)=0.7 $

$P(B)=0.4 $

$\Rightarrow \quad P\left(B^{c}\right)=0.6 \text { and } P\left(A \cap B^{c}\right)=0.5 $

$\text { Now, } P\left(A \cup B^{c}\right)=P(A)+P\left(B^{c}\right)-P\left(A \cap B^{c}\right) $

$\therefore P\left[B /\left(A \cup B^{c}\right]=\frac{P\{B \cap\left(A \cup B^{c}\right) \}}{P\left(A \cup B^{c}\right)}\right. $

$=0.7+0.6-0.5=0.8 $

$=\frac{P\{(B \cap A) \cup\left(B \cap B^{c}\right) \}}{0.8}=\frac{P\{(B \cap A) \cup \phi\}}{0.8}=\frac{P(B \cap A)}{0.8}$

$=\frac{1}{0.8}\left[P(A)-P\left(A \cap B^{c}\right)\right] $

$ =\frac{0.7-0.5}{0.8}=\frac{0.2}{0.8}=\frac{1}{4}$



Table of Contents