Probability Ques 69

Let $A$ and $B$ be two non-null events such that $A \subset B$. Then, which of the following statements is always correct.

(2019 Main, 8 April I)

(a) $P(A / B)=P(B)-P(A)$

(b) $P(A / B) \geq P(A)$

(c) $P(A / B) \leq P(A)$

(d) $P(A / B)=1$

Show Answer

Answer:

Correct Answer: 69.(b)

Solution:

Formula:

Set theoretical notation of probability and some important results:

  1. We know that, $P(A / B)=\frac{P(A \cap B)}{P(B)}$

[by the definition of conditional probability]

$ \begin{array}{lc} \because & A \subset B \\ \Rightarrow & A \cap B=A \\ \therefore & P(A / B)=\frac{P(A)}{P(B)} \quad …….(i) \end{array} $

As we know that, $0 \leq P(B) \leq 1$

$ \begin{array}{lll} \therefore & 1 & \leq \frac{1}{P(B)}<\infty \Rightarrow P(A) \leq \frac{P(A)}{P(B)}<\infty \\ \Rightarrow & \frac{P(A)}{P(B)} & \geq P(A) \quad …….(ii) \end{array} $

Now, from Eqs (i) and (ii), we get

$ P(A / B) \geq P(A) $



Table of Contents