Probability Ques 90

Let two fair six-faced dice $A$ and $B$ be thrown simultaneously. If $E _1$ is the event that die $A$ shows up four, $E _2$ is the event that die $B$ shows up two and $E _3$ is the event that the sum of numbers on both dice is odd, then which of the following statements is not true?

(2016 Main)

(a) $E _1$ and $E _2$ are independent

(b) $E _2$ and $E _3$ are independent

(c) $E _1$ and $E _3$ are independent

(d) $E _1, E _2$ and $E _3$ are independent

Show Answer

Answer:

Correct Answer: 90.(d)

Solution:

Formula:

Multiplication Theorem:

  1. Clearly, $E _1=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)\}$

and $E _2 =(1,2),(2,2),(3,2),(4,2),(5,2),(6,2)$

$E_3 =(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),$

$(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5)$

$\Rightarrow \quad P\left(E _1\right)=\frac{6}{36}=\frac{1}{6}, P\left(E _2\right)=\frac{6}{36}=\frac{1}{6}$

and $P\left(E _3\right)=\frac{18}{36}=\frac{1}{2}$

Now, $P\left(E _1 \cap E _2\right)=P$ (getting $4$ on die $A$ and $2$ on die $B$ )

$ =\frac{1}{36}=P\left(E _1\right) \cdot P\left(E _2\right) $

$P\left(E _2 \cap E _3\right)=P$ (getting $2$ on die $B$ and sum of numbers on both dice is odd)

$ =\frac{3}{36}=P\left(E _2\right) \cdot P\left(E _3\right) $

$P\left(E _1 \cap E _3\right)=P$ (getting $4$ on die $A$ and sum of numbers on both dice is odd)

$ =\frac{3}{36}=P\left(E _1\right) \cdot P\left(E _3\right) $

and $P\left(E _1 \cap E _2 \cap E _3\right)=P$ [getting $4$ on die $A, 2$ on die $B$ and sum of numbers is odd]

$ =P(\text { impossible event })=0 $

Hence, $E _1, E _2$ and $E _3$ are not independent.



Table of Contents