Probability Ques 93

An experiment has $10$ equally likely outcomes. Let $A$ and $B$ be two non-empty events of the experiment. If $A$ consists of $4$ outcomes, then the number of outcomes that $B$ must have, so that $A$ and $B$ are independent, is

(a) $2,4$ or $8$

(b) $3,6$ or $9$

(c) $4$ or $8$

(d) $5$ or $10$

$(2008,3$ M)

Show Answer

Answer:

Correct Answer: 93.(d)

Solution:

Formula:

Multiplication Theorem:

  1. Since, $P(A)=\frac{2}{5}$

For independent events,

$P(A \cap B)=P(A) P(B) $

$\Rightarrow \quad P(A \cap B) \leq \frac{2}{5} $

$\Rightarrow \quad P(A \cap B)=\frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}$

[maximum $4 $ outcomes may be in $A \cap B$ ]

(i) Now, $\quad P(A \cap B)=\frac{1}{10}$

$\Rightarrow P(A) \cdot P(B)=\frac{1}{10} $

$\Rightarrow P(B)=\frac{1}{10} \times \frac{5}{2}=\frac{1}{4}, \text { not possible }$

(ii) Now, $\quad P(A \cap B)=\frac{2}{10} \Rightarrow \frac{2}{5} \times P(B)=\frac{2}{10}$

$\Rightarrow \quad P(B)=\frac{5}{10}$, outcomes of $B=5$

(iii) Now, $\quad P(A \cap B)=\frac{3}{10}$

$\Rightarrow \quad P(A) P(B)=\frac{3}{10} \Rightarrow \frac{2}{5} \times P(B)=\frac{3}{10} $

$P(B)=\frac{3}{4}, \text { not possible }$

(iv) Now,

$ P(A \cap B)=\frac{4}{10} \Rightarrow P(A) \cdot p(B)=\frac{4}{10} $

$ \Rightarrow \quad P(B)=1 \text {, outcomes of } B=10 \text {. } $



Table of Contents