Properties Of Triangles Ques 13

The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Determine the sides of the triangle.

(1991, 4M)

Show Answer

Answer:

Correct Answer: 13.($4, 5, 6$ units)

Solution:

  1. Let $A B C$ be the triangle such that the lengths of its sides $C A, A B$ and $B C$ are $(x-1), x$ and $(x+1)$ respectively, where $x \in N$ and $x>1$. Let $\angle B=\alpha$ be the smallest angle and $\angle A=2 \alpha$ be the largest angle.

Then, by sine rule, we have

$\frac{\sin \alpha}{x-1} =\frac{\sin 2 \alpha}{x+1} $

$\Rightarrow \frac{\sin 2 \alpha}{\sin \alpha} =\frac{x+1}{x-1} $

$\Rightarrow 2 \cos \alpha =\frac{x+1}{x-1} $

$\therefore \cos \alpha =\frac{x+1}{2(x-1)}$ $\quad$ …….(i)

Also, $\cos \alpha=\frac{x^{2}+(x+1)^{2}-(x-1)^{2}}{2 x(x+1)} \quad$ [using cosine law]

$ \Rightarrow \quad \cos \alpha=\frac{x+4}{2(x+1)} $ $\quad$ …….(ii)

From Eqs. (i) and (ii),

$ \begin{aligned} & & \frac{x+1}{2(x-1)} & =\frac{x+4}{2(x+1)} \\ \Rightarrow & & (x+1)^{2} & =(x+4)(x-1) \\ \Rightarrow & & x^{2}+2 x+1 & =x^{2}+3 x-4 \\ \Rightarrow & & x & =5 \end{aligned} $

Hence, the lengths of the sides of the triangle are $4$, $5$ and $6$ units.



Table of Contents