Properties Of Triangles Ques 38

The set of all real numbers a such that $a^{2}+2 a, 2 a+3$ and $a^{2}+3 a+8$ are the sides of a triangle is ……

$(1985,2 M)$

Show Answer

Answer:

Correct Answer: 38.$(a>5)$

Solution:

Formula:

Sine Rule:

  1. Since, $a^{2}+2 a, 2 a+3$ and $a^{2}+3 a+8$ form sides of a triangle.

Now, $a^{2}+3 a+8<\left(a^{2}+2 a\right)+(2 a+3)$

$\Rightarrow \quad a^{2}+3 a+8<a^{2}+4 a+3$

$\Rightarrow \quad a>5 \quad …….(i)$

Also, $\left(a^{2}+3 a+8\right)+(2 a+3)>a^{2}+2 a$

$ \begin{aligned} \Rightarrow & 3 a >-11 \\ \Rightarrow & a >-\frac{11}{3}\quad …….(ii) \end{aligned} $

Again, $\left(a^{2}+3 a+8\right)+\left(a^{2}+2 a\right)>2 a+3$

$ \Rightarrow \quad 2 a^{2}+3 a+5>0 $

which is always true.

$\therefore$ Triangle is formed, if $a>5$



Table of Contents