Properties Of Triangles Ques 52

The exradii $r _1, r _2, r _3$ of $\triangle A B C$ are in HP, show that its sides $a, b, c$ are in AP.

$(1983,3 M)$

Show Answer

Solution:

  1. Since, $r _1, r _2$ and $r _3$ are exradii of $\triangle A B C$ are in HP.

$\therefore \frac{1}{r _1}, \frac{1}{r _2}, \frac{1}{r _3} \text { are in AP. } $

$\Rightarrow \frac{s-a}{\Delta}, \frac{s-b}{\Delta}, \frac{s-c}{\Delta} \text { are in } AP . $

$\Rightarrow s-a, s-b, s-c \text { are in } AP . $

$\Rightarrow -a,-b,-c \text { are in } AP . $

$\Rightarrow a, b, c \text { are in AP. }$



Table of Contents