Sequences And Series Ques 1

  1. The sum of series $1+\frac{1^3+2^3}{1+2}+\frac{1^3+2^3+3^3}{1+2+3}+\ldots$ $+\frac{1^3+2^3+3^3+\ldots+15^3}{1+2+3+\ldots+15}-\frac{1}{2}(1+2+3+\ldots+15)$ is equal to

(2019 Main, 10 April II)

(a) $620$

(b) $660$

(c) $1240$

(d) $1860$

Show Answer

Answer:

Correct Answer: 1.(a)

Solution: (a) Given series,

$ \begin{aligned} S & =1+\frac{1^3+2^3}{1+2}+\frac{1^3+2^3+3^3}{1+2+3}+\ldots+ \\ & \frac{1^3+2^3+3^3+\ldots+15^3}{1+2+3+\ldots+15}-\frac{1}{2}(1+2+3+\ldots+15) \\ & =S_1-S_2 \text { (let) } \end{aligned} $

where,

$ \begin{aligned} & S_1=1+\frac{1^3+2^3}{1+2}+\frac{1^3+2^3+3^3}{1+2+3}+\ldots+ \\ & \frac{1^3+2^3+8^3+\ldots+15^3}{1+2+3+\ldots+15} \\ & =\sum_{n=1}^{15} \frac{1^3+2^3+\ldots+n^3}{1+2+\ldots+n}=\sum_{n=1}^{15} \frac{\left(\frac{n(n+1)}{2}\right)^2}{\frac{n(n+1)}{2}} \\ & {\left[\because \sum_{r=1}^n r^3=\left(\frac{n(n+1)}{2}\right)^2 \text { and } \sum_{r=1}^n r=\frac{n(n+1)}{2}\right]} \\ & =\sum_{n=1}^{15} \frac{n(n+1)}{2}=\frac{1}{2} \sum_{n=1}^{15}\left(n^2+n\right) \\ & =\frac{1}{2}\left[\frac{15 \times 16 \times 31}{6}+\frac{15 \times 16}{2}\right] \\ & {\left[\because \sum_{r=1}^n r^2=\frac{n(n+1)(2 n+1)}{6}\right]} \\ & =\frac{1}{2}[(5 \times 8 \times 31)+(15 \times 8)] \\ & =(5 \times 4 \times 31)+(15 \times 4) \\ & =620+60=680 \\ & \text { and } S_2=\frac{1}{2}(1+2+3+\ldots+15) \\ & =\frac{1}{2} \times \frac{15 \times 16}{2}=60 \\ \end{aligned} $

Therefore, $S=S_1-S_2=680-60=620$.



Table of Contents