Sequences And Series Ques 10

  1. If $a, b$ and $c$ are distinct positive numbers, then the expression $(b+c-a)(c+a-b)(a+b-c)-a b c$ is

(1991, 2M)

(a) positive

(b) negative

(c) non-positive

(d) non-negative

Show Answer

Answer:

Correct Answer: 10.(b)

Solution: (b) Since, $\mathrm{AM}>\mathrm{GM}$

$\therefore \frac{(b+c-a)+(c+a-b)}{2}>(b+c-a)(c+a-b)^{1 / 2}$

$\Rightarrow \quad c>[(b+c-a)(c+a-b)]^{1 / 2}$ $\quad$ ……..(i)

Similarly $ \quad b>[(a+b-c)(b+c-a)]^{1 / 2} $ $\quad$ ……..(ii)

and $ \quad a>[(a+b-c)(c+a-b)]^{1 / 2} $ $\quad$ ……..(iii)

On multiplying Eqs. (i), (ii) and (iii), we get

$ a b c>(a+b-c)(b+c-a)(c+a-b) $

Hence, $(a+b-c)(b+c-a)(c+a-b)-a b c<0$



Table of Contents