Sequences And Series Ques 103

If $\cos (x-y), \cos x$ and $\cos (x+y)^{\prime}$ are in HP. Then $\cos x \cdot \sec \frac{y}{2}=\ldots$.

(1997C, 2M)

Show Answer

Answer:

Correct Answer: 103.$(\pm \sqrt{2})$

Solution:

Formula:

HARMONICAL PROGRESSION (H.P.):

  1. Since, $\cos (x-y), \cos x$ and $\cos (x+y)$ are in HP.

$ \begin{aligned} & \therefore \quad \cos x=\frac{2 \cos (x-y) \cos (x+y)}{\cos (x-y)+\cos (x+y)} \\ & \Rightarrow \quad \cos x(2 \cos x \cdot \cos y)=2\{\cos ^{2} x-\sin ^{2} y \} \\ & \Rightarrow \quad \cos ^{2} x \cdot \cos y=\cos ^{2} x-\sin ^{2} y \\ & \Rightarrow \quad \cos ^{2} x(1-\cos y)=\sin ^{2} y \\ & \Rightarrow \quad \cos ^{2} x \cdot 2 \sin ^{2} \frac{y}{2}=4 \sin ^{2} \frac{y}{2} \cdot \cos ^{2} \frac{y}{2} \\ & \Rightarrow \quad \cos ^{2} x \cdot \sec ^{2} \frac{y}{2}=2 \\ & \therefore \quad \cos x \cdot \sec \frac{y}{2}= \pm \sqrt{2} \end{aligned} $



Table of Contents