Sequences And Series Ques 22

  1. If $a, b, c$ are positive real numbers, then prove that

$ \{(1+a)(1+b)(1+c)\}^7>7^7 a^4 b^4 c^4 $

(2004, 4M)

Show Answer

Solution: Here, $(1+a)(1+b)(1+c)$

$ =1+a+b+c+a b+b c+c a+a b c $ $\quad$ ……..(i)

Since, $\frac{a+b+c+a b+b c+c a+a b c}{7} \geq\left(a^4 b^4 c^4\right)^{1 / 7} \quad$ [using AM $\geq$ GM]

$\Rightarrow \quad a+b+c+a b+b c+c a+a b c \geq 7\left(a^4 b^4 c^4\right)^{1 / 7}$

$\Rightarrow \quad 1+a+b+c+c a+a b c>7\left(a^4 b^4 c^4\right)^{1 / 7}$ $\quad$ ……..(ii)

From Eqs. (i) and (ii), we get

$ (1+a)(1+b)(1+c)>7\left(a^4 b^4 c^4\right)^{1 / 7} $

or $\{(1+a)(1+b)(1+c)\}^7>7^7\left(a^4 b^4 c^4\right)$



Table of Contents