Sequences And Series Ques 29

  1. If the sum of the first $15$ terms of the series $\left(\frac{3}{4}\right)^3+\left(1 \frac{1}{2}\right)^3+\left(2 \frac{1}{4}\right)^3+3^3+\left(3 \frac{3}{4}\right)^3+\ldots$ is equal to $225$ $ k$, then $k$ is equal to

(2019 Main, 12 Jan II)

(a) $108$

(b) $27$

(c) $54$

(d) $9$

Show Answer

Answer:

Correct Answer: 29.(b)

Solution: (b) Given series is

$\left(\frac{3}{4}\right)^3+\left(1 \frac{1}{2}\right)^3+\left(2 \frac{1}{4}\right)^3+3^3+\left(3 \frac{3}{4}\right)^3+\ldots$

Let $S=\left(\frac{3}{4}\right)^3+\left(\frac{6}{4}\right)^3+\left(\frac{9}{4}\right)^3+\left(\frac{12}{4}\right)^3$ $+\left(\frac{15}{4}\right)^3+\ldots+$ upto $15$ terms

$=\left(\frac{3}{4}\right)^3\left[1^3+2^3+3^3+4^3+5^3+\ldots+15^3\right]$

$=\left(\frac{3}{4}\right)^3\left(\frac{15 \times 16}{2}\right)^2$

$\left[\because 1^3+2^3+3^3+\ldots+n^3=\left(\frac{n(n+1)}{2}\right)^2, n \in N\right]$

$=\frac{27}{64} \times \frac{225 \times 256}{4}$ $=27 \times 225$

$\Rightarrow S=27 \times 225=225 k \quad $ [given]

$\Rightarrow k=27$



Table of Contents